Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

Phrases Previous Year Questions (PYQs)

Phrases Limit PYQ








Go to Discussion


Solution



lim, then find k





Go to Discussion


Solution

Quick DL Method Solution

Given:

\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^2}{x^2 - k^2}

LHS using derivative:

\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \left.\frac{d}{dx}(x^4)\right|_{x=1} = 4x^3|_{x=1} = 4

RHS using DL logic:

\lim_{x \to k} \frac{x^3 - k^2}{x^2 - k^2} \approx \frac{3k^2(x - k)}{2k(x - k)} = \frac{3k}{2}

Equating both sides:

\frac{3k}{2} = 4 \Rightarrow k = \frac{8}{3}

\boxed{k = \frac{8}{3}}



Let f(x)=\frac{x^2-1}{|x|-1}. Then the value of lim_{x\to-1} f(x) is





Go to Discussion


Solution



 is equal to 





Go to Discussion


Solution



The value of the limit \lim _{{x}\rightarrow0}\Bigg{(}\frac{{1}^x+{2}^x+{3}^x+{4}^x}{4}{\Bigg{)}}^{1/x} is





Go to Discussion


Solution



Which of the following is NOT true?





Go to Discussion


Solution



For a\in R (the set of al real numbers), a \ne 1, \lim _{{n}\rightarrow\infty}\frac{({1}^a+{2}^a+{\ldots+{n}^a})}{{(n+1)}^{a-1}\lbrack(na+1)(na+b)\ldots(na+n)\rbrack}=\frac{1}{60} . Then one of the value of a is





Go to Discussion


Solution



The value of {{Lt}}_{x\rightarrow0}\frac{{e}^x-{e}^{-x}-2x}{1-\cos x} is equal to 





Go to Discussion


Solution

Evaluate: \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{1 - \cos x}

Step 1: Apply L'Hôpital's Rule (since it's 0/0):

First derivative: \frac{e^x + e^{-x} - 2}{\sin x}

Still 0/0 → Apply L'Hôpital's Rule again: \frac{e^x - e^{-x}}{\cos x}

Now, \lim_{x \to 0} \frac{1 - 1}{1} = 0

Final Answer: \boxed{0}



\lim_{x\to \infty} (\frac{x+7}{x+2})^{x+5} equal to





Go to Discussion


Solution



Let f(x) be a polynomial of degree four, having extreme value at x = 1 and x = 2. If \lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3, then f(2) is





Go to Discussion


Solution

Given it has extremum values at x=1 and x=2
⇒f′(1)=0  and  f′(2)=0
Given f(x) is a fourth degree polynomial 
Let  f(x)=a{x}^4+b{x}^3+c{x}^2+dx+e
Given 
\lim _{{x}\rightarrow0}[1+\frac{f(x)}{{x}^2}]=3
\lim _{{x}\rightarrow0}\lbrack1+\frac{a{x}^4+b{x}^3+c{x}^2+\mathrm{d}x+e}{{x}^2}\rbrack=3
\lim _{{x}\rightarrow0}\lbrack1+a{x}^2+bx+c+\frac{d}{x}+\frac{e}{{x}^2}\rbrack=3
For limit to have finite value, value of 'd' and 'e' must be 0
⇒d=0  & e=0
Substituting x=0 in limit 
⇒ c+1=3
⇒ c=2
f^{\prime}(x)=4a{x}^3+3b{x}^2+2cx+d
x=1 and x=2 are extreme values,
f^{\prime}(1)=0 and $f^{\prime}(2)=0
4a+3b+4=0 and 32a+12b+8=0 
By solving these equations
we get, a=\frac{1}{2} and b=-2
So,
f(x)=\frac{x^{4}}{2}-2x^{3}+2x^{2}
f(x)=x^{2}(\frac{x^{2}}{2}-2x+2)
f(2)=2^{2}(2-4+2)
f(2)=0



The value of \lim_{x\to a} \frac{\sqrt{a+2x}-\sqrt{3x}}{\sqrt{3a+x}-2\sqrt{x}}





Go to Discussion


Solution








Go to Discussion


Solution

Function is the form of  therefore using by L'Hospital rule
Again apply L'Hospital Rule,
Putting x = 0, we get 
 



Find 





Go to Discussion


Solution



If f(x)=\lim _{{x}\rightarrow0}\, \frac{{6}^x-{3}^x-{2}^x+1}{\log _e9(1-\cos x)} is a real number then \lim _{{x}\rightarrow0}\, f(x)





Go to Discussion


Solution



Phrases


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Phrases


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.